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Abstract. A random mixture of two components is considered. It is assumed that both these
components have current-voltage characteristics which contain weak nonlinear terms of a power-
law type. General results for the effective nonlinear susceptibility as well as for critical current
and voltage, defined as the crossovers from linear to nonlinear behaviour are obtained, both above
and below the percolation threshold. They agree with the results obtained previously for some
less general composites. New results for the mixture of ‘nonlinear insulator'+‘linear metal’ are
found. All these results are valid in the low-field limit. For larger fields it is shown that the
exponent describing the scaling of critical current as a function of conductance obeys the relation:
x < (d — L)v/t for a random metal-insulator composite ang: 1 — v/q for a superconductor—
normal conductor composité {s dimensionalityp is the percolation correlation length exponent
andr andg are conductivity critical exponents for metal-insulator and superconductor—normal
conductor percolation, respectively).

Inrecent years there has been anincreasing interest in nonlinear inhomogeneous media. Below
we consider the case ofthe so-called weak nonlinearity. The simplest case is cubic nonlinearity,
defined by a current density/field relationship of the form

Jj@) = ®KE + x @)K @K F)
relating the current densﬂy(r) and eIectrlc fleIdK(r) at any pointr of the medium, where
o (r) is the linear component of the IocalversusK characteristic and<(r) is called the
local nonlinear susceptibility. The condition ‘weak’ requie§’) > X(r)|K(r)|2 Stroud
and Hui [1] and Aharony [2] have shown that in the limit of low fields the ovefarlersus
K dependence is also cublp = oK + x|K[?K. The effective conductivity is given by

o= (a(r)K(r) )/(K(r)) , Whereas the effective nonlinear susceptibilityjs related to the
fourth moment of the local field distribution,

X = (xXAKOH/ K@
An example of such a nonlinear medium is a two-component mixture of well conducting
(‘metallic’) and poorly conducting (‘insulating’) components, which both display weak cubic
nonlinearity: j = oK + x.|K|2K for the metallic component anfl = 0,K + x4|K|2K
for the insulating (dielectric) component, wherg > o,, andy,, and x, denote nonlinear
susceptibilities of the components. One of the approaches frequently used to study a random

system is to map it onto a random resistor network. The network usually takes the form of a
d-dimensional lattice in which the bonds of lengihare occupied in a random way by either
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metallic or insulating components. In the network notation the effective susceptibility can be
rewritten as

4—d

X = LV—4 (Xm Z VA + 3 Z V,~4> = L (X Whiz + xaWp2)
ieM ieD

whereV; is the voltage which appears on bahdhen the network is biased by the external

voltageV andL is the lattice size (the number of bonds along one of network eddgg).

andWp, are the second moments of voltage distributions. In generalttherder moments

of these distributions are defined as [3, 4]

Vi 2k Vz 2k
WDk_ieZD(V> WMk_ieZM<V)
fork =0,1,2,3,..., where the summation is restricted to the bonds which are occupied by
either insulatingi € D) or metallic ¢ € M) component. In the limit of low fields it was shown
that the moment® ., Wy, which are defined for the nonlinear problem, can be replaced by
such moments found for the corresponding linear problem [1, 2] (i.exfoe x, = 0). In

the linear problem the behaviour of the momeits;,, Wy, was found both above and below
the percolation threshold [3—10]. It is summarized in table 1.

Table 1. Scaling of moments of voltage distributions near the percolation threshold.

P < Pc P> Pe
Wk Ld72k|r|q(2k)72kq Ld*Zk.ﬂ](Zk)*qu
Wtk Ld—Zkth‘r‘z(Zk)—Zk(ﬁq) Ld—Zk.[t(Zk)

In this tablep is the volume fraction of the metallic component,is the percolation threshold,
T =p— p.,andh = o,/0, is a small parameter. The exponeni&) andq (2k) are related
to the multifractal exponents(2k) and¢ (2k) defined by de Arcangelist al[11, 12]

1(2k) = (d — 2k)v + p(2k) (1)
q(2k) — 2kg = (d — 2k)v + £ (2k)v )

wherev is the percolation correlation length exponent. Important special case&are ¢
andq(2) = ¢, which characterize the linear conductivity behaviour above and below the
percolation thresholdo] ~ ¢,,t' for p > p. ando ~ o4|t|™ for p < p. [13,14], and

the resistance noise exponents- 2t — 1(4), and«’ = 2q — ¢(4) [15, 16]. The relations in
table 1 enable one to find the behaviour of the effective cubic-nonlinear susceptibility in the
neighbourhood of the percolation threshold [10, 17]

X~ KT @+ qa Tl =, T TP for p > p. (3)
X~ Hn BT OTHED | 21D = |7 T b T TETM for p < pe. (4)
When studying experimental nonlingaversusV characteristics one usually defines a critical
field K. which is the value oK at which the nonlinear contribution becomes a paoft the
linear contribution [18], i.ex K2 = so K.. The critical fieldk, ~ (o/x)¥? is related to
the critical voltageK,. = V. /(apL) and to the critical currenk, = V.G. For example, for a
mixture of nonlinear metab(, > 0, x,, > 0) and ideal insulator(; = 0, x, = 0) we obtain
Lo ~ Gl(ont")/ Gn T )]Y2 ~ GO T0/2 ~ GBI

in agreement with the results of Aharony [2] and Blumenfeld and Bergman [19]. Another
well studied example is the mixture of a perfect conductor and a nonlinear normal conductor
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[20, 21] It can be obtained from our two-component system assuajing 0, x, > 0, and
on = 00, x» = 0. Nonlinear behaviour is observed below the percolation threshold. For
p < p. the critical field scales as

Ko ~ [(0alt]™1)/(xalt =27 D]M? ~ |z|@)/2

in agreement with the result of Hui [20]. Another studied example was the composition of
‘nonlinear metal’ and ‘linear insulator’ [22—-24]. One may imagine also the relevant case of
‘nonlinear insulator’+‘linear metal’. Assuming; > 0, x4 > 0, ando,, > o4, xn = 0O we
obtain

Ve ~ [(0nT")/(xat 27 )] M2 ~ g Gr150/2 ~ Gl /D/2
for p > p., and
Ve ~ [oal el ™)/ (alt |27 Y2 ~ | 0/2 ~ G arD/2

for p < p.. The values of exponents that describe critical volt&geas a function of
conductanc& are summarized in table 2.

Table 2. Values of exponents that describe scaling of critical voltgges a function of conductance

G for nonlinear insulator+linear metal random system. In the calculation, values of critical
exponents, ¢ and«’ from the literature [5] were used.

d (/t+1+2/1)/2 —('/q+1)/2

2 1.94(4) —0.94(4)
3 1.08(2) —0.93(7)

_These results can be generalized to_higher-order_nonlinearity. If we asﬁume
omK + x| K|1%2K for ‘metal’ andj = o,K + x4|K|% 2K for ‘insulator’, k = 2,3, ...,
then the total powerl dissipated in the network is the sum of the powers dissipated in all of
its bonds

M= (aoL)* (j)(K) = (aoL)" (o (K)?+ x (K)*) = a§ ) (01| Kil® + x| Ki 1)

whereo; = o0, xi = x» for metallic bonds and; = o,, x; = x4 for insulating bonds. From
the above balance the generalized formula for the effective higher-order nonlinear susceptibility
can be obtained [2, 25]

X =LY xi (1Kl /(KD = Gm Witk + xa W) L* .

Foro, = 0, x4 = 0, i.e. for the first nonlinear random resistor network that was considered
[1,2,19], this formula can be rewritten in terms of the higher-order cumulants of conductivity
fluctuations, because the momelitg, relate the cumulanBs*). of the overall conductivity
fluctuations to the cumulando’ ). of the local conductivity fluctuations [15, 26]

m
(80%)e ~ L& D(8G ) ~ L* VWi (80, )c.
Thus we obtain the relation
x ~ L% D(50%),

which only in part agrees with that of Blumenfeld and Bergman [19]. They incorrectly proposed
x ~ L4(8c%), which made the effective paramegesize dependent and has led to incorrect
analyses performed in some papers on related subjects [27-29].
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Now we can rewrite equations (3) and (4) in a form valid for arbitrary order nonlinearity

X~ T B0 gqrI @072 for p > p

X~ Xnh® || GOTEOD 4y | g 1@ for p < p.

These agree with [29] and [30] and disagree with [27] and [28]. Again, the critical field
K. can be defined as a field at which the linear and nonlinear terms become comparable,
K. = (s0/x)Y@*=2_ In the caser; = x; = 0 (random resistor network) we obtain for

P > Pe

A [1—1(20)]/(2k—2)
~ m o lt=t —
Ke < Xm !0 ) ’ (5)

or equivalentlyl. ~ GK. ~ G*, with exponenk = 1+[1—1t(2k)/t]/(2k — 2), in agreement
with [2]. In the caser,, = 0o, x4 = 0 (random resistor superconductor network) we obtain
for p < pe

oqlt| 1/(2k—2)
Ko~ —2 ~ |z|maa@+2kal/2-2) ©6)
‘ Xalt|9@0=2ka '

Eventually for the mixture of ‘nonlinear insulator’+'linear metat,(> 0, x; > 0, 0, > oy,
xm = 0) we obtain
K.~ [(Umrl)/(xdtq(Zk)—qu)]1/(2k—2) ~ li—a@)+2%kq]/(2k=2) 7
I.~GK,. ~ G1H1-q@h)/1+2kq/1]/(2k~2)

for p > p. and
Ko ~ [(0alt]™1) ) (xa| T[4BT 20|V @=2) |7 |[ma—a(@0+2kq]/ k=2 ®)
I. ~GK,.~ Gl+[q(2k)/q+1*2k]/(2k72)

for p < p.. Since the exponents that describeversusG are related (via equations (1) and
(2)) to the multifractal exponen{s(2)/v and¢ (2k), their values now can be calculated. For
k = 2, 3 andoo, they are summarized in table 3.

Table 3. Values of exponents that describe scaling of critical currgnais a function of
conductancé; for ‘linear metal’+‘nonlinear insulator’ mixture for various types of nonlinearity.
In the calculations, the values of multifractal exponents from [5] were upé2)/v = 1.20(3),
7(2) = 1.893), {(4) = 1.55(3), £(6) = 1.42(3) in 3D and p(2)/v = ¢(2) = 0.98(2),
C(4) = 0.82(2), t(6) = 0.77(2) in 2D. Fork = oo we assumed (co) = 1/v [11,12, 18],
andv = 4/3in 2D orv = 0.88(1) in 3D [31].

P> Pc P < Dc
k 1+[1—q(2k)/t +2kq/t]/(2k —2) 1+][q(2k)/q+1—2k]/(2k —2)
2 2.08(2) (3D), 2.94(4) (2D) 0.07(7) (3D), 0.06(4) (2D)
3 1.75(2) (3D), 2.47(4) (2D) 0.01(5) (3D), 0.03(4) (2D)
oo 1.45(1) (3D), 2.02(2) (2D) —0.12(4) (3D),0.02(2) (2D)

All the above calculations are only valid in the limit of low fields; only in this case can
the distribution of fields in nonlinear systems be replaced by the distribution of fields in the
corresponding linear problem. Theoretically, the low-field limit can be always approached
for sufficiently small values of parametegrfor which the critical quantities are evaluated. In
practice, reasonable valuessoéire of the order of 0.1. This requires larger fields for which it

may happen that the system is outside the low-field limit. This problem will now be discussed
in more detalil.
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Figure 1. Log-log plots of critical fieldsk, (dashed lines, equation (5)) and maximum average
field (K')max (solid line, equation (9)) versusfor a nonlinear random resistor network. Critical
fields are drawn for larger (upper line) and smaller (lower line) values of paraeetewhich K.

is evaluated.

In the low-field limit we shall havék (7)| < [g,0(F)/x (F)]Y %2, whereg, is a small
parameter, at any point of the system. In the case of percolation systems this condition
provides an estimate of the maximum average fi@dax that may be applied to the system.

This is because for a percolation system the distribution of local fields is fairly well known.
For example, for a classical random resistor netwetk £ 0) the maximum fields appear

at the so-called singly connected bonds (SCBs). These bonds carry the largest currents in
the system: any SCB carries the whole current from the area ok$iZe where¢ is the
percolation correlation length. Singe~ ||~ we have

Kscg~ (J)E™r ~ o (K)ET™1 ~ (K)|r| 717D,

This field must not exceed the maximum local field allowed in the sysigas < K7™ =
[e10m/ xm]Y @2, Consequently, the average figlkl) must not exceed

(K)max = Kjpet|" D7 ©)

loc

This value should be now compared with that of equation (5). From the theory of multifractal
exponents we know that(2k > 2) > p(2)(2k — 1) [11, 12, 15]. The comparison shows then
thatK. > (K)max at least forr — 0 (p — p.) (see figure 1). This means that the system
enters the region where theory does not apply (somewhere inside the system the local field
exceeds its maximum value™?) before the critical field. given by equation (5) is reached:

for largee the critical field may scale in a way different from that of equation (5). However, the
theory says that the critical field must not be smaller thiémax. Consequently, the exponent

x in the I. versusG relation must obey

xg;w—b (10)

rather than the relation below equation (5).

In another example, the random resistor superconductor netepek (oo), the maximum
fields appear at the so-called singly disconnected bonds (SDBs). These bonds are biased by the
whole voltage that appears on the piece of network of size equal to the percolation correlation
lengthé. We haveKspg ~ (k)é ~ (K)|t|™". This field must not exceed the maximum
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Figure 2. Log-log plots of critical fieldK, (dashed lines) and maximum average fiekt) max
(solid lines) versus for the mixture of linear conductor+nonlinear insulator. The lines are drawn
according to equations (7), (8) and (11).

allowed local field, which for this case is given &"® = [¢,0,/£,]Y?~2. The maximum
average field is then

(K)max= K"™|7]". (11)

loc

Comparison with equation (6) shows th&if > (K)max at least forjtr| — 0 (p — p.)

(this conclusion is a direct consequence of the relati@ > 2) > ¢(2), which comes

from multifractals [11, 12]). If so, the scaling of critical voltage in the random conductor
superconductor network may be different from that of equation (6). We can only conclude that
for a larges the exponent which describes this scaling is not larger thalternatively, the
exponentx in the I, versusG relation should obey the inequality

x>1-2 (12)
q
Finally, let us consider the case of the network of nonlinear insulator + linear conductor. Since
metal is linear, only the fields in the insulating phase need be considered: equation (11)
describes the maximum average field both above and below the percolation threshold.
Comparison with equations (7) and (8) leads us again to the conclusion that the system leaves
the low-field limit before the critical fiel& . is reached (see figure 2).

All the above examples show that, in practice, the region in which the critical quantities
scale in the manner described by the theory of weakly nonlinear random media is never
approached. The fields required to measure the critical quantity are usually too large to keep the
system in the low-field limit, where the critical exponents given by this theory hold. For such
large field the theory predicts only the relation of equation (10) for the random metal+insulator
composite and of equation (12) for the superconductor+normal conductor composite.
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