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Abstract. A random mixture of two components is considered. It is assumed that both these
components have current–voltage characteristics which contain weak nonlinear terms of a power-
law type. General results for the effective nonlinear susceptibility as well as for critical current
and voltage, defined as the crossovers from linear to nonlinear behaviour are obtained, both above
and below the percolation threshold. They agree with the results obtained previously for some
less general composites. New results for the mixture of ‘nonlinear insulator’+‘linear metal’ are
found. All these results are valid in the low-field limit. For larger fields it is shown that the
exponentx describing the scaling of critical current as a function of conductance obeys the relation:
x 6 (d − 1)ν/t for a random metal–insulator composite andx > 1− ν/q for a superconductor–
normal conductor composite (d is dimensionality,ν is the percolation correlation length exponent
and t andq are conductivity critical exponents for metal–insulator and superconductor–normal
conductor percolation, respectively).

In recent years there has been an increasing interest in nonlinear inhomogeneous media. Below
we consider the case of the so-called weak nonlinearity. The simplest case is cubic nonlinearity,
defined by a current density/field relationship of the form

Ej(Er) = σ(Er) EK(Er) + χ(Er)| EK(Er)|2 EK(Er)
relating the current densityEj(Er) and electric fieldEK(Er) at any pointEr of the medium, where
σ(Er) is the linear component of the localEj versus EK characteristic andχ(Er) is called the
local nonlinear susceptibility. The condition ‘weak’ requiresσ(Er) � χ(Er)| EK(Er)|2. Stroud
and Hui [1] and Aharony [2] have shown that in the limit of low fields the overallEj versus
EK dependence is also cubic,Ej = σ EK + χ | EK|2 EK. The effective conductivityσ is given by
σ = 〈σ(Er) EK(Er)2〉/〈 EK(Er)〉2, whereas the effective nonlinear susceptibility,χ , is related to the
fourth moment of the local field distribution,

χ = 〈χ(Er) EK(Er)4〉/〈 EK(Er)4〉.
An example of such a nonlinear medium is a two-component mixture of well conducting
(‘metallic’) and poorly conducting (‘insulating’) components, which both display weak cubic
nonlinearity: Ej = σm EK + χm| EK|2 EK for the metallic component andEj = σd EK + χd | EK|2 EK
for the insulating (dielectric) component, whereσm � σd , andχm andχd denote nonlinear
susceptibilities of the components. One of the approaches frequently used to study a random
system is to map it onto a random resistor network. The network usually takes the form of a
d-dimensional lattice in which the bonds of lengtha0 are occupied in a random way by either
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metallic or insulating components. In the network notation the effective susceptibility can be
rewritten as

χ = L4−d

V 4

(
χm
∑
i∈M

V 4
i + χd

∑
i∈D

V 4
i

)
= L4−d(χmWM2 + χdWD2)

whereVi is the voltage which appears on bondi when the network is biased by the external
voltageV andL is the lattice size (the number of bonds along one of network edges).WM2

andWD2 are the second moments of voltage distributions. In general thekth-order moments
of these distributions are defined as [3, 4]

WDk =
∑
i∈D

(
Vi

V

)2k

WMk =
∑
i∈M

(
Vi

V

)2k

for k = 0, 1, 2, 3, . . ., where the summation is restricted to the bonds which are occupied by
either insulating (i ∈ D) or metallic (i ∈ M) component. In the limit of low fields it was shown
that the momentsWDk,WMk, which are defined for the nonlinear problem, can be replaced by
such moments found for the corresponding linear problem [1, 2] (i.e. forχd = χm = 0). In
the linear problem the behaviour of the momentsWDk,WMk was found both above and below
the percolation threshold [3–10]. It is summarized in table 1.

Table 1. Scaling of moments of voltage distributions near the percolation threshold.

p < pc p > pc

WDk Ld−2k |τ |q(2k)−2kq Ld−2kτ q(2k)−2kq

WMk Ld−2kh2k |τ |t (2k)−2k(t+q) Ld−2kτ t (2k)

In this tablep is the volume fraction of the metallic component,pc is the percolation threshold,
τ ≡ p − pc, andh ≡ σd/σm is a small parameter. The exponentst (2k) andq(2k) are related
to the multifractal exponentsp(2k) andζ(2k) defined by de Arcangeliset al [11, 12]

t (2k) ≡ (d − 2k)ν + p(2k) (1)

q(2k)− 2kq ≡ (d − 2k)ν + ζ(2k)ν (2)

whereν is the percolation correlation length exponent. Important special cases aret (2) ≡ t
and q(2) ≡ q, which characterize the linear conductivity behaviour above and below the
percolation threshold, [σ ∼ σmτ

t for p > pc andσ ∼ σd |τ |−q for p < pc [13, 14], and
the resistance noise exponentsκ = 2t − t (4), andκ ′ = 2q − q(4) [15, 16]. The relations in
table 1 enable one to find the behaviour of the effective cubic-nonlinear susceptibility in the
neighbourhood of the percolation threshold [10, 17]

χ ∼ χmτ t(4) + χdτ
q(4)−4q = χmτ 2t−κ + χdτ

−2q−κ ′ for p > pc (3)

χ ∼ χmh4|τ |t (4)−4(t+q) + χd |τ |q(4)−4q = χd |τ |−2q−κ ′ + χmh4|τ |−κ−2t−4q for p < pc. (4)

When studying experimental nonlinearI versusV characteristics one usually defines a critical
fieldKc which is the value ofK at which the nonlinear contribution becomes a partε of the
linear contribution [18], i.e.χK3

c = εσKc. The critical fieldKc ∼ (σ/χ)1/2 is related to
the critical voltageKc = Vc/(a0L) and to the critical currentIc = VcG. For example, for a
mixture of nonlinear metal (σm > 0,χm > 0) and ideal insulator (σd = 0,χd = 0) we obtain

Ic ∼ G[(σmτ
t )/(χmτ

2t−κ)]1/2 ∼ Gτ(κ−t)/2 ∼ G(κ/t+1)/2

in agreement with the results of Aharony [2] and Blumenfeld and Bergman [19]. Another
well studied example is the mixture of a perfect conductor and a nonlinear normal conductor
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[20, 21] It can be obtained from our two-component system assumingσd > 0, χd > 0, and
σm = ∞, χm = 0. Nonlinear behaviour is observed below the percolation threshold. For
p < pc the critical field scales as

Kc ∼ [(σd |τ |−q)/(χd |τ−2q−κ ′ |)]1/2 ∼ |τ |(q+κ ′)/2

in agreement with the result of Hui [20]. Another studied example was the composition of
‘nonlinear metal’ and ‘linear insulator’ [22–24]. One may imagine also the relevant case of
‘nonlinear insulator’+‘linear metal’. Assumingσd > 0, χd > 0, andσm � σd , χm = 0 we
obtain

Vc ∼ [(σmτ
t )/(χdτ

−2q−κ ′)]1/2 ∼ τ (2q+t+κ ′)/2 ∼ G(2q/t+1+κ ′/t)/2

for p > pc, and

Vc ∼ [(σd |τ |−q)/(χd |τ |−2q−κ ′)]1/2 ∼ |τ |(q+κ ′)/2 ∼ G−(κ ′/q+1)/2

for p < pc. The values of exponents that describe critical voltageVc as a function of
conductanceG are summarized in table 2.

Table 2. Values of exponents that describe scaling of critical voltageVc as a function of conductance
G for nonlinear insulator+linear metal random system. In the calculation, values of critical
exponentst , q andκ ′ from the literature [5] were used.

d (κ ′/t + 1 + 2q/t)/2 −(κ ′/q + 1)/2

2 1.94(4) −0.94(4)
3 1.08(2) −0.93(7)

These results can be generalized to higher-order nonlinearity. If we assumeEj =
σm EK + χm| EK|2k−2 EK for ‘metal’ and Ej = σd EK + χd | EK|2k−2 EK for ‘insulator’, k = 2, 3, . . .,
then the total power5 dissipated in the network is the sum of the powers dissipated in all of
its bonds

5=(a0L)
d〈j〉〈K〉 = (a0L)

d(σ 〈K〉2 + χ〈K〉2k) = ad0
∑
i

(σi |Ki |2 + χi |Ki |2k)

whereσi = σm, χi = χm for metallic bonds andσi = σd , χi = χd for insulating bonds. From
the above balance the generalized formula for the effective higher-order nonlinear susceptibility
can be obtained [2, 25]

χ = L−d
∑
i

χi(|Ki |/〈K〉)2k = (χmWMk + χdWDk)L
2k−d .

For σd = 0, χd = 0, i.e. for the first nonlinear random resistor network that was considered
[1, 2, 19], this formula can be rewritten in terms of the higher-order cumulants of conductivity
fluctuations, because the momentsWMk relate the cumulant〈δσ k〉c of the overall conductivity
fluctuations to the cumulant〈δσ km〉c of the local conductivity fluctuations [15, 26]

〈δσ k〉c ∼ L(2−d)k〈δGk〉c ∼ L(2−d)kWMk〈δσ km〉c.
Thus we obtain the relation

χ ∼ Ld(k−1)〈δσ k〉c
which only in part agrees with that of Blumenfeld and Bergman [19]. They incorrectly proposed
χ ∼ Ld〈δσ k〉c, which made the effective parameterχ size dependent and has led to incorrect
analyses performed in some papers on related subjects [27–29].
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Now we can rewrite equations (3) and (4) in a form valid for arbitrary order nonlinearity

χ ∼ χmτ t(2k) + χdτ
q(2k)−2kq for p > pc

χ ∼ χmh2k|τ |t (2k)−2k(t+q) + χd |τ |q(2k)−2kq for p < pc.

These agree with [29] and [30] and disagree with [27] and [28]. Again, the critical field
Kc can be defined as a field at which the linear and nonlinear terms become comparable,
Kc = (εσ/χ)1/(2k−2). In the caseσd = χd = 0 (random resistor network) we obtain for
p > pc

Kc ∼
(

σmτ
t

χmτ t(2k)

)1/(2k−2)

∼ τ [t−t (2k)]/(2k−2) (5)

or equivalentlyIc ∼ GKc ∼ Gx , with exponentx = 1 + [1− t (2k)/t ]/(2k−2), in agreement
with [2]. In the caseσm = ∞, χd = 0 (random resistor superconductor network) we obtain
for p < pc

Kc ∼
(

σd |τ |−q
χd |τ |q(2k)−2kq

)1/(2k−2)

∼ |τ |[−q−q(2k)+2kq]/(2k−2). (6)

Eventually for the mixture of ‘nonlinear insulator’+‘linear metal’ (σd > 0,χd > 0,σm � σd ,
χm = 0) we obtain

Kc ∼ [(σmτ
t )/(χdτ

q(2k)−2kq)]1/(2k−2) ∼ τ [t−q(2k)+2kq]/(2k−2) (7)

Ic ∼ GKc ∼ G1+[1−q(2k)/t+2kq/t ]/(2k−2)

for p > pc and

Kc ∼ [(σd |τ |−q)/(χd |τ |q(2k)τ−2kq)]1/(2k−2) ∼ |τ |[−q−q(2k)+2kq]/(2k−2) (8)

Ic ∼ GKc ∼ G1+[q(2k)/q+1−2k]/(2k−2)

for p < pc. Since the exponents that describeIc versusG are related (via equations (1) and
(2)) to the multifractal exponentsp(2)/ν andζ(2k), their values now can be calculated. For
k = 2, 3 and∞, they are summarized in table 3.

Table 3. Values of exponents that describe scaling of critical currentIc as a function of
conductanceG for ‘linear metal’+‘nonlinear insulator’ mixture for various types of nonlinearity.
In the calculations, the values of multifractal exponents from [5] were used:p(2)/ν = 1.20(3),
ζ(2) = 1.89(3), ζ(4) = 1.55(3), ζ(6) = 1.42(3) in 3D andp(2)/ν = ζ(2) = 0.98(2),
ζ(4) = 0.82(2), ζ(6) = 0.77(2) in 2D. For k = ∞ we assumedζ(∞) = 1/ν [11, 12, 16],
andν = 4/3 in 2D orν = 0.88(1) in 3D [31].

p > pc p < pc

k 1 + [1− q(2k)/t + 2kq/t ]/(2k − 2) 1 + [q(2k)/q + 1− 2k]/(2k − 2)
2 2.08(2) (3D), 2.94(4) (2D) 0.07(7) (3D), 0.06(4) (2D)
3 1.75(2) (3D), 2.47(4) (2D) 0.01(5) (3D), 0.03(4) (2D)
∞ 1.45(1) (3D), 2.02(2) (2D) −0.12(4) (3D),−0.02(2) (2D)

All the above calculations are only valid in the limit of low fields; only in this case can
the distribution of fields in nonlinear systems be replaced by the distribution of fields in the
corresponding linear problem. Theoretically, the low-field limit can be always approached
for sufficiently small values of parameterε, for which the critical quantities are evaluated. In
practice, reasonable values ofε are of the order of 0.1. This requires larger fields for which it
may happen that the system is outside the low-field limit. This problem will now be discussed
in more detail.
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Figure 1. Log–log plots of critical fieldsKc (dashed lines, equation (5)) and maximum average
field 〈K〉max (solid line, equation (9)) versusτ for a nonlinear random resistor network. Critical
fields are drawn for larger (upper line) and smaller (lower line) values of parameterε for whichKc
is evaluated.

In the low-field limit we shall have| EK(Er)| 6 [εlσ (Er)/χ(Er)]1/(2k−2), whereεl is a small
parameter, at any pointEr of the system. In the case of percolation systems this condition
provides an estimate of the maximum average field〈K〉max that may be applied to the system.
This is because for a percolation system the distribution of local fields is fairly well known.
For example, for a classical random resistor network (σd = 0) the maximum fields appear
at the so-called singly connected bonds (SCBs). These bonds carry the largest currents in
the system: any SCB carries the whole current from the area of sizeξd−1, whereξ is the
percolation correlation length. Sinceξ ∼ |τ |−ν we have

KSCB∼ 〈j〉ξd−1 ∼ σ 〈K〉ξd−1 ∼ 〈K〉|τ |t−(d−1)ν .

This field must not exceed the maximum local field allowed in the system:KSCB 6 Kmax
loc =

[εlσm/χm]1/(2k−2). Consequently, the average field〈K〉 must not exceed

〈K〉max= Kmax
loc |τ |ν(d−1)−t . (9)

This value should be now compared with that of equation (5). From the theory of multifractal
exponents we know thatp(2k > 2) > p(2)(2k− 1) [11, 12, 15]. The comparison shows then
thatKc > 〈K〉max at least forτ → 0 (p → pc) (see figure 1). This means that the system
enters the region where theory does not apply (somewhere inside the system the local field
exceeds its maximum valueKmax

loc ) before the critical fieldKc given by equation (5) is reached:
for largeε the critical field may scale in a way different from that of equation (5). However, the
theory says that the critical field must not be smaller than〈K〉max. Consequently, the exponent
x in theIc versusG relation must obey

x 6 ν

t
(d − 1) (10)

rather than the relation below equation (5).
In another example, the random resistor superconductor network (σm = ∞), the maximum

fields appear at the so-called singly disconnected bonds (SDBs). These bonds are biased by the
whole voltage that appears on the piece of network of size equal to the percolation correlation
length ξ . We haveKSDB ∼ 〈k〉ξ ∼ 〈K〉|τ |−ν . This field must not exceed the maximum
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Figure 2. Log–log plots of critical fieldKc (dashed lines) and maximum average field〈K〉max
(solid lines) versusτ for the mixture of linear conductor+nonlinear insulator. The lines are drawn
according to equations (7), (8) and (11).

allowed local field, which for this case is given byKmax
loc = [εlσd/ξd ]1/(2k−2). The maximum

average field is then

〈K〉max= Kmax
loc |τ |ν . (11)

Comparison with equation (6) shows thatKc > 〈K〉max at least for|τ | → 0 (p → pc)
(this conclusion is a direct consequence of the relationζ(2k > 2) > ζ(2), which comes
from multifractals [11, 12]). If so, the scaling of critical voltage in the random conductor
superconductor network may be different from that of equation (6). We can only conclude that
for a largeε the exponent which describes this scaling is not larger thanν. Alternatively, the
exponentx in theIc versusG relation should obey the inequality

x > 1− ν
q
. (12)

Finally, let us consider the case of the network of nonlinear insulator + linear conductor. Since
metal is linear, only the fields in the insulating phase need be considered: equation (11)
describes the maximum average field both above and below the percolation threshold.
Comparison with equations (7) and (8) leads us again to the conclusion that the system leaves
the low-field limit before the critical fieldKc is reached (see figure 2).

All the above examples show that, in practice, the region in which the critical quantities
scale in the manner described by the theory of weakly nonlinear random media is never
approached. The fields required to measure the critical quantity are usually too large to keep the
system in the low-field limit, where the critical exponents given by this theory hold. For such
large field the theory predicts only the relation of equation (10) for the random metal+insulator
composite and of equation (12) for the superconductor+normal conductor composite.
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